(本小题满分12分) 已知数列中,点 在函数的图象上,.数列的前n项和为,且满足当时, (1)证明数列是等比数列;(2)求;(3)设,,求的值.
(本小题满分12分)已知函数.(Ⅰ)求的最小正周期;(Ⅱ)求在区间上的最大值与最小值.
(本小题满分12分)已知.(Ⅰ)求的值;(Ⅱ)求函数的单调递减区间.
(本小题满分12分)已知,且,设p:函数在R上递减;q:函数在上为增函数,若“p且q”为假,“p或q”为真,求实数的取值范围.
(本小题满分12分)已知函数,(1)求函数的单调递增区间;(2)若不等式在区间(0,上恒成立,求的取值范围;(3)求证:
(本小题满分12分)如图,在四棱锥P-ABCD中,AB∥ CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD. E和F分别是CD和PC的中点.求证:(1)PA⊥底面ABCD;(2)BE∥平面PAD;(3)平面BEF⊥平面PCD.