设椭圆过两点,为坐标原点。(I)求椭圆的方程;(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点.且?若存在,写出该圆的方程,并求的取值范围,若不存在说明理由。
(本小题14分)已知f(x)=(x∈R)在区间[-1,1]上是增函数,(1)求实数a的值组成的集合A;(2)设关于x的方程f(x)=的两个非零实根为x1、x2。试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.
(本小题13分)已知函数与的图象相交于,,,分别是的图象在两点的切线,分别是,与轴的交点.(1)求的取值范围;(2)设为点的横坐标,当时,写出以为自变量的函数式,并求其定义域和值域;(3)试比较与的大小,并说明理由(是坐标原点).
(本小题12分)已知二次函数满足:对任意实数x,都有,且当时,有成立. (1)求; (2)若的表达式; (3)设,若图上的点都位于直线的上方,求实数m的取值范围。
经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80-2t(件),价格近似满足(元).(1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;(2)求该种商品的日销售额y的最大值与最小值.
(本小题12分)设不等式的解集为M,如果M,求实数的取值范围.