设椭圆过两点,为坐标原点。(I)求椭圆的方程;(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点.且?若存在,写出该圆的方程,并求的取值范围,若不存在说明理由。
在数列{an}中,已知. (1)求数列{an}的通项公式; (2)求证:数列{bn}是等差数列; (3)设数列{cn}满足cn=an+bn,求{cn}的前n项和Sn.
已知函数f(x)=2sinωxcosωx﹣2sin2ωx+(ω>0),直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1﹣x2|的最小值为. (Ⅰ)求ω的值; (Ⅱ)求函数f(x)的单调增区间; (Ⅲ)若f(α)=,求sin(π﹣4α)的值.
如图所示,PA⊥平面ABCD,四边形ABCD为正方形,且E,F,G,H分别是线段PA、PD、CD、BC的中点. (1)求证:BC∥平面EFG; (2)DH⊥平面AEG.
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cos,=3. (1)求△ABC的面积; (2)若c=1,求a、sinB的值.
设函数f(x)=x2(ex﹣1)+ax3 (1)当时,求f(x)的单调区间; (2)若当x≥0时,f(x)≥0恒成立,求a的取值范围.