已知函数,当>0时,若函数在区间[-1、2]上是减函数,求的取值范围。
如图,海上有两个小岛相距10,船O将保持观望A岛和B岛所成的视角为,现从船O上派下一只小艇沿方向驶至处进行作业,且.设。 (1)用分别表示和,并求出的取值范围; (2)晚上小艇在处发出一道强烈的光线照射A岛,B岛至光线的距离为,求BD的最大值.
一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4。 (Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率; (Ⅱ)先从袋中随机取一个球,该球的编号为,将球放回袋中,然后再从袋中随机取一个球,该球的编号为,求+2的概率。
三棱锥P−ABC中,PA⊥平面ABC,AB⊥BC。 (1)证明:平面PAB⊥平面PBC; (2)若,,PB与底面ABC成60°角,分别是与的中点,是线段上任意一动点(可与端点重合),求多面体的体积。
集合,,若命题,命题,且是必要不充分条件,求实数的取值范围。
已知函数. (I)当时,求的单调区间 (Ⅱ)若不等式有解,求实数m的取值菹围; (Ⅲ)定义:对于函数和在其公共定义域内的任意实数,称的值为两函数在处的差值。证明:当时,函数和在其公共定义域内的所有差值都大干2。