已知圆,相互垂直的两条直线、都过点.(Ⅰ)当时,若圆心为的圆和圆外切且与直线、都相切,求圆的方程;(Ⅱ)当时,求、被圆所截得弦长之和的最大值.
已知椭圆的离心率为,且两个焦点和短轴的一个端点是一个等腰三角形的顶点.斜率为的直线过椭圆的上焦点且与椭圆相交于,两点,线段的垂直平分线与轴相交于点.(Ⅰ)求椭圆的方程;(Ⅱ)求的取值范围;(Ⅲ)试用表示△的面积,并求面积的最大值.
已知函数.(Ⅰ)求函数在区间上的最小值;(Ⅱ)证明:对任意,都有成立.
甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲面试合格的概率为,乙、丙面试合格的概率都是,且面试是否合格互不影响.(Ⅰ)求至少有1人面试合格的概率;(Ⅱ)求签约人数的分布列和数学期望.
已知四棱锥的底面是菱形.,,,与交于点,,分别为,的中点.(Ⅰ)求证:∥平面;(Ⅱ)求证:平面;(Ⅲ)求直线与平面所成角的正弦值
在△中,角,,的对边分别为,,分,且满足.(Ⅰ)求角的大小;(Ⅱ)若,求△面积的最大值