为了了解《中华人民共和国道路交通安全法》在学生中的普及情况 ,调查部门对某校5名学生进行问卷调查,5人得分情况如下:6,7,8,9,10。把这5名学生的得分看成一个总体。(1)求该总体的平均数;(2)用简单随机抽样方法从这5名学生中抽取2名,他们的得分组成一个样本,求该样本平均数与总体平均数之差的绝对值超过0.5的概率。
已知矩阵A=有一个属于特征值1的特征向量. (Ⅰ) 求矩阵A; (Ⅱ) 若矩阵B=,求直线先在矩阵A,再在矩阵B的对应变换作用下的像的方程.
已知函数,() (1)若函数存在极值点,求实数b的取值范围; (2)求函数的单调区间; (3)当且时,令,(),()为曲线y=上的两动点,O为坐标原点,能否使得是以O为直角顶点的直角三角形,且斜边中点在y轴上?请说明理由。
已知圆,椭圆. (Ⅰ)若点在圆上,线段的垂直平分线经过椭圆的右焦点,求点的横坐标; (Ⅱ)现有如下真命题: “过圆上任意一点作椭圆的两条切线,则这两条切线互相垂直”; “过圆上任意一点作椭圆的两条切线,则这两条切线互相垂直”. 据此,写出一般结论,并加以证明.
如图,是半圆的直径,是半圆上除、外的一个动点,垂直于半圆所在的平面, ∥,,,. ⑴证明:平面平面; ⑵当三棱锥体积最大时,求二面角的余弦值.
某超市在节日期间进行有奖促销,凡在该超市购物满300元的顾客,将获得一次摸奖机会,规则如下: 奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回的每次摸出1个球,若摸到黑球则停止摸奖,否则就要将奖盒中的球全部摸出才停止.规定摸到红球奖励10元,摸到白球或黄球奖励5元,摸到黑球不奖励. (Ⅰ)求1名顾客摸球3次停止摸奖的概率; (Ⅱ)记为1名顾客摸奖获得的奖金数额,求随机变量的分布列和数学期望.