(本题满分14分)已知直线L1与直线L2:x-3y+6=0平行,L1与两坐标轴围成的三角形的面积是8,求直线L1方程.
已知:正方体,为棱的中点.(1)求证:(2)求三棱锥的体积;(3)求证:平面.
已知数列,其中是首项为1,公差为1的等差数列;是公差为的等差数列;是公差为的等差数列().(1)若,求;(2)试写出关于的关系式,并求的取值范围;(3)续写已知数列,使得是公差为的等差数列,……,依次类推,把已知数列推广为无穷数列的一般结论是什么?(不需要证明)
在中,为锐角,角所对的边分别为,且,.(Ⅰ)求的值;(Ⅱ)若,求的值.
某项竞赛分别为初赛、复赛、决赛三个阶段进行,每个阶段选手要回答一个问题.规定正确回答问题者进入下一阶段竞赛,否则即遭淘汰.已知某选手通过初赛、复赛、决赛的概率分别是,且各阶段通过与否相互独立.(I)求该选手在复赛阶段被淘汰的概率;(II)设该选手在竞赛中回答问题的个数为,求的分布列、数学期望和方差.
设集合.(Ⅰ)求;(Ⅱ)若,求的取值范围.