(本题满分14分)已知直线L1与直线L2:x-3y+6=0平行,L1与两坐标轴围成的三角形的面积是8,求直线L1方程.
若函数.(Ⅰ)求函数的定义域,判断函数的奇偶性.(Ⅱ)若关于()的方程,求.
甲盒中有1个黑球1个白球;乙盒中有1个黑球2个红球.这些球除了颜色不同外其余无差别. (Ⅰ)从两个盒子中各取1个球,求取出的两个球颜色不同的概率.(Ⅱ)若把两盒中所有的球混合后放入丙盒中.从丙盒中一次取出两个球,求取出的两个球颜色不同的概率.
(本题12分)如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,BC∥AD, AB⊥AD, AD=2AB=2BC="2, " O为AD中点.(1)求证:PO⊥平面ABCD;(2)求直线PB与平面PAD所成角的正弦值;(3)线段AD上是否存在点Q,使得三棱锥的体积为?若存在,求出的值;若不存在,请说明理由。
(本题12分)如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,∠PDA=45°,点E、F分别为棱AB、PD的中点.(1)求证:平面PCD;(2)求证:平面PCE⊥平面PCD.
(本题12分)如图,在直三棱柱(侧棱与底面垂直的三棱柱)中,,,,是边的中点.(Ⅰ)求证:; (Ⅱ)求证:∥面.