已知.求(1)的值.(2) 的值.(3)通过这些值你能做出什么猜想? 试证明你的猜想
(本小题满分12分)己知、、是椭圆:()上的三点,其中点的坐标为,过椭圆的中心,且,。(1)求椭圆的方程;(2)过点的直线(斜率存在时)与椭圆交于两点,,设为椭圆与 轴负半轴的交点,且,求实数的取值范围.
(本题满分12分) 某权威机构发布了2013年度“城市居民幸福排行榜”,某市成为本年度城市最“幸福城”.随后,该市某校学生会组织部分同学,用“10分制”随机调查“阳光”社区人们的幸福度.现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):(1)指出这组数据的众数和中位数;(2)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到“极幸福”的人数,求的分布列及数学期望.
(本小题满分12分)如图,是半圆的直径,是半圆上除、外的一个动点,垂直于半圆所在的平面, ∥,,,.(1)证明:平面平面;(2)当三棱锥体积最大时,求二面角的余弦值.
(本小题满分12分)中内角的对边分别为,向量且(1)求锐角的大小;(2)如果,求的面积的最大值.
给出下列四个结论:(1)如图中,D是斜边AC上的点,|CD|=|CB|.以B为起点任作一条射线BE交AC于E点,则E点落在线段CD上的概率是;(2)设某大学的女生体重y(kg)与身高x(cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2, ,n),用最小二乘法建立的线性回归方程为 ,则若该大学某女生身高增加1 cm,则其体重约增加0.85 kg;(3)为调查中学生近视情况,测得某校男生150名中有80名近视,在140名女生中有70名近视.在检验这些学生眼睛近视是否与性别有关时,应该用独立性检验最有说服力;(4)已知随机变量服从正态分布则其中正确结论的个数为( )