(本题12分)设函数,曲线在点M处的切线方程为.(1)求的解析式; (2)求函数的单调递减区间;(3)证明:曲线上任一点处的切线与直线和直线所围成的三角形面积为定值,并求此定值.
(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系中,直线的参数方程为为参数),以该直角坐标系的原点为极点,轴的非负半轴为极轴的极坐标系下,圆的方程为.(Ⅰ)求直线的普通方程和圆的圆心的极坐标;(Ⅱ)设直线和圆的交点为、,求弦的长.
(本小题满分10分)选修4—1:几何证明选讲如图,为⊙的直径,直线与⊙相切于,垂直于,垂直于,垂直于,连接,.证明:(Ⅰ);(Ⅱ).
(本小题满分12分)已知函数,(其中).(Ⅰ)如果函数和有相同的极值点,求的值,并直接写出函数的单调区间;(Ⅱ)令,讨论函数在区间上零点的个数。
(本小题满分12分)如图,曲线由上半椭圆和部分抛物线 连接而成,的公共点为,其中的离心率为. (Ⅰ)求的值; (Ⅱ)过点的直线与分别交于(均异于点),若,求直线的方程.
(本小题满分12分)如图,三棱柱中,,,平面平面,与相交于点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值.