(本小题满分12分)设函数,.(1)当时,在上恒成立,求实数的取值范围;(2)当时,若函数在上恰有两个不同的零点,求实数的取值范围;(3)是否存在常数,使函数和函数在公共定义域上具有相同的单调性?若存在,求出的取值范围;若不存在,请说明理由.
在直角坐标系中,曲线的参数方程为.若以该直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为:(其中为常数)(1)若曲线与曲线只有一个公共点,求的取值范围;(2)当时,求曲线上的点与曲线上点的最小距离
如图,已知是的外接圆,AB=BC,AD是BC边上的高,AE是的直径.(1)求证:;(2)过点C作的切线交BA的延长线于点F,若AF=4,CF=6,求AC的长.
已知数列的通项公式(1)求证:;(2)设数列的前n项和为,求证:.
已知函数(1)若函数的图象在原点处的切线与函数的图象相切,求实数k的值;(2)若对于,总存在,且满足,其中e为自然对数的底数,求实数k的取值范围.
篮球比赛时,运动员的进攻成功率=投球命中率×不被对方运动员的拦截率。某运动员在距球篮10米(指到篮圈圆心在地面上射影的距离)以内的投球命中率有如下变化:距球篮1米以内(不含1米)为100%.距离球篮x米处,命中率下降至.该运动员投球被拦截率为.试求该运动员在比赛时:(结果精确到)(1)在三分线(约距球篮6.72米)处的进攻成功率为多少?(2)在距球篮几米处的进攻成功率最大,最大进攻成功率为多少?