(本小题满分12分)已知函数().(1)当时,求函数的单调区间;(2)若对任意实数,当时,函数的最大值为,求的取值范围.
已知各项均不为零的数列,其前n项和满足;等差数列中,且是与的等比中项 (1)求和, (2)记,求的前n项和.
如图,在几何体中,点在平面ABC内的正投影分别为A,B,C,且,,E为中点, (1)求证;CE∥平面, (2)求证:求二面角的大小.
已知向量. (1)求函数的单调增区间; (2)已知锐角△ABC中角A,B,C的对边分别为a,b,c.其面积,求b+c的值.
一次函数是上的增函数,,已知. (1)求; (2)若在单调递增,求实数的取值范围; (3)当时,有最大值,求实数的值.
已知平面内两点. (1)求的中垂线方程; (2)求过点且与直线平行的直线的方程; (3)一束光线从点射向(Ⅱ)中的直线,若反射光线过点,求反射光线所在的直线方程.