(本小题满分12分)某小组有男、女学生共13人,现从中选2人去完成一项任务。设每人当选的可能性相同。⑴若选出的两人性别相同的概率为,求选出的两人性别不同的概率;⑵若已知该班男生有9人,求选出的两人性别不同的概率。
已知函数. (1)求函数的极值点与极值; (2)设为的导函数,若对于任意,且,恒成立,求实数的取值范围.
如图,已知菱形,其边长为2,,绕着顺时针旋转得到,是的中点. (1)求证:平面; (2)求直线与平面所成角的正弦值.
已知数列为等差数列,,数列满足,且.(1)求通项公式;(2)设数列的前项和为,试比较与的大小.
已知函数. (1)求函数的对称轴方程和单调递增区间; (2)若中,分别是角的对边,且,,求的面积.
若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和的“隔离直线”.已知,为自然对数的底数). (Ⅰ)求的极值; (Ⅱ)函数和是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.