(某本题满分12分)某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为 当年产量不足80千件时,(万元);当年产量不小于80千件时,(万元).通过市场分析,若每件售价为500元时,该厂当年生产该产品能全部销售完.(1)写出年利润(万元)关于年产量x(千件)的函数解析式;(2)年产量为多少千件时,该厂在这一产品的生产中所获利润最大,最大利润是多少?
已知圆(x+4)2+y2=25的圆心为M1,圆(x-4)2+y2=1的圆心为M2,一动圆与这两个圆都外切. ⑴求动圆圆心P的轨迹方程; ⑵若过点M2的直线与⑴中所求轨迹有两个交点A、B,求|AM1|·|BM1|的取值范围.
椭圆的中心在原点,焦点在x轴上,焦距为2,且经过点A ; (1)求满足条件的椭圆方程; (2)求该椭圆的顶点坐标,长轴长,短轴长,离心率.
(本小题满分12分)的内切圆与三边AB、BC、CA的切点分别为D、E、F,已知,内切圆圆心,设点A的轨迹为L。(1)求L的方程;(2)过点C的动直线交曲线L于不同的两点M、N,问在轴上是否存在一定点Q(Q不与C重合),使恒成立,若存在,试求出Q点的坐标,若不存在,说明理由。
(本小题满分12分)袋中有分别写着“团团”和“圆圆”的两种玩具共7个,且形状完全相同,从中任取2个玩具都是“圆圆”的概率为,A、B两人不放回从袋中轮流摸取一个玩具,A先取,B后取,然后A再取,……直到两人中有一人取到“圆圆”时即停止游戏,每个玩具在每一次被取出的机会是均等的,用表示游戏终止时取玩具的次数。(1)求袋中“圆圆”的个数;(2)求3的概率。
(本小题满分12分) 设函数 (1)若函数在内没有极值点,求的取值范围。 (2)若对任意的,不等式上恒成立,求实数的取值范围。