(本小题满分12分)从1、2、3、4、5、8、9这7个数中任取三个数,共有35种不同的取法(两种取法不同,指的是一种取法中至少有一个数与另一种取法中的三个数都不相同)。(Ⅰ)求取出的三个数能够组成等比数列的概率;(Ⅱ)求取出的三个数的乘积能被2整除的概率。
设等比数列{}的前项和,首项,公比.(Ⅰ)证明:;(Ⅱ)若数列{}满足,,求数列{}的通项公式;(Ⅲ)若,记,数列{}的前项和为,求证:当时,.
已知不等式ax2-3x+6>4的解集为{x|x<1或x>b},(1)求a,b;(2)解不等式ax2-(ac+b)x+bc<0.
某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段,…后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(Ⅰ)求第四小组的频率,并补全这个频率分布直方图;(Ⅱ)估计这次考试的及格率(60分及以上为及格)和平均分;(Ⅲ) 从成绩是70分以上(包括70分)的学生中选两人,求他们在同一分数段的概率.
在△ABC中,sinB+sinC=sin(A-C).(1)求A的大小;(2)若BC=3,求△ABC的周长l的最大值.
某工厂对某产品的产量与成本的资料分析后有如下数据:(1) 画出散点图。(2) 求成本y与产量x之间的线性回归方程。(结果保留两位小数)