(本小题满分14分)如图,在四棱锥中,,,底面是菱形,且,为的中点.(Ⅰ)证明:平面;(Ⅱ)侧棱上是否存在点,使得平面?并证明你的结论.
已知直线经过点A,求:(1)直线在两坐标轴上的截距相等的直线方程;(2)直线与两坐标轴的正半轴围成三角形面积最小时的直线方程.
已知函数,(1)求在区间的最小值;(2)求在区间的值域
已知函数是定义在R上的偶函数,且当≤0时,.(1)现已画出函数在y轴左侧的图像,如图所示,请补出完整函数的图像,并根据图像写出函数的增区间; (2)写出函数的解析式和值域.
已知f(x)是二次函数,不等式f(x)<0的解集是(0,5) ,且f(x)在区间[-1,4]上的最大值是12.(1)求f(x)的解析式.(2)求f(x)在区间[-1,4]的值域.
如图,底角∠ABE=45°的直角梯形ABCD,底边BC长为4cm,腰长AB为cm,当一条垂直于底边BC的直线l从左至右移动(与梯形ABCD有公共点)时,直线l把梯形分成两部分,令BE=x,试写出阴影部分的面积y与x的函数关系式,并画出函数大致图象..