(本小题满分12分)已知平面.(1)求证:平面;(2)M为线段CP上的点,当时,求三棱锥的体积.
设a为实数, 函数 (Ⅰ)求的极值. (Ⅱ)当a在什么范围内取值时,曲线轴仅有一个交点.
已知函数的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为. (Ⅰ)求函数的解析式; (Ⅱ)求函数的单调区间.
已知倾斜角为的直线L经过抛物线的焦点F,且与抛物线相交于、两点,其中坐标原点. (1)求弦AB的长; (2)求三角形的面积.
设数列的前n项和为,点均在直线上. (1)求数列的通项公式;(2)设,试证明数列为等比数列.
将A、B两枚骰子各抛掷一次,观察向上的点数,问: (I)共有多少种不同的结果? (II)两枚骰子点数之和是3的倍数的结果有多少种? (III)两枚骰子点数之和是3的倍数的概率为多少?