(本题14分) 某公司将进货单价为8元一个的商品按10元一个销售,每天可以卖出100个,若这种商品的销售价每个上涨一元,则销售量就减少8个.(1)求销售价为13元时每天的销售利润;(2)如果销售利润为336元,那么销售价上涨了几元?(3)设销售价上涨x元()试将利润y表示为x的函数,并求出上涨几元,可获最大利润.
在直角坐标系中,曲线C的参数方程为(为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,点,直线的极坐标方程为. (1)判断点与直线l的位置关系,说明理由; (2)设直线与曲线C的两个交点为A、B,求的值.
直线与抛物线交于两点A、B,如果弦的长度. ⑴求的值; ⑵求证:(O为原点)。
在调查男女乘客是否晕机的情况中,已知男乘客晕机为28人,不会晕机的也是28人,而女乘客晕机为28人,不会晕机的为56人, (1)根据以上数据建立一个的列联表; (2)试判断是否有95%的把握认为是否晕机与性别有关?其中为样本容量。
已知,设p:函数在(0,+∞)上单调递减, q:曲线y=x2+(2a 3)x+1与x轴交于不同的两点.若“p且q”为假,“﹁q”为假,求a的取值范围.
已知函数, (1)求在点(1,0)处的切线方程; (2)判断及在区间上的单调性; (3)证明:在上恒成立.