一个同心圆形花坛,分为两部分,中间小圆部分种植草坪和绿色灌木,周围的圆环分为n(n≥3,n∈N)等份,种植红、黄、蓝三色不同的花,要求相邻两部分种植不同颜色的花. (1)如图1,圆环分成的3等份为a1,a2,a3,有多少不同的种植方法?如图2,圆环分成的4等份为a1,a2,a3,a4,有多少不同的种植方法? (2)如图3,圆环分成的n等份为a1,a2,a3,……,an,有多少不同的种植方法?
解关于的不等式.
设函数. (1)当时,求函数的单调区间; (2)若当时,求a的取值范围.
用数学归纳法证明:
已知函数 (1)当a=2时,求曲线在点处的切线方程; (2)求函数的极值.
已知曲线的极坐标方程是,以极点为原点,极轴为轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位. (1)写出曲线的普通方程,并说明它表示什么曲线; (2)过点作倾斜角为的直线与曲线相交于两点,求线段的长度和的值.