随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为.(1)求的分布列;(2)求1件产品的平均利润(即的数学期望);(3)经技术革新后,仍有四个等级的产品,但次品率降为,一等品率提高为.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?
(本小题满分10分)(1) (2)解方程:
(本小题满分11分)已知函数,(1)求函数的定义域;(2)设,若函数在(2,3)内有且仅有一个零点,求实数的取值范围;(3)设,求函数在[3,9]内的值域;
(本小题满分10分)某电子科技公司遇到一个技术性难题,决定成立甲、乙两个攻关小组,按要求各自独立进行为期一个月的技术攻关,同时决定对攻关限期内攻克技术难题的小组给予奖励. 已知此技术难题在攻关期限内被甲小组攻克的概率为,被乙小组攻克的概率为,(1)设为攻关期满时获奖的攻关小组数,求的分布列及数学期望;(2)设为攻关期满时获奖的攻关小组数与没有获奖的攻关小组数之差的平方,记“函数在定义域内单调递增”为事件C,求事件C发生的概率;
(本小题满分9分)己知是定义在R上的奇函数,当时,(其中且)(1)求函数的解析式;(2)当为何值时,的值的小于0?
(本小题满分9分)如图是某出租车在A、B两地间进行的一次业务活动中,离开A地的时间与相距A地的路程的函数图象. 其中纵轴s(km)表示该出租车与A地的距离,t(h)表示该出租车离开A地的时间.(1)写出s与t的函数关系式;(2)写出速度v(km/h)与时间t(h)的函数关系式;(3)描述该出租车的行驶情况;