随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为.(1)求的分布列;(2)求1件产品的平均利润(即的数学期望);(3)经技术革新后,仍有四个等级的产品,但次品率降为,一等品率提高为.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?
设函数的定义域是,其中常数. (1)若,求的过原点的切线方程. (2)当时,求最大实数,使不等式对恒成立. (3)证明当时,对任何,有.
设:的准线与轴交于点,焦点为;椭圆以为焦点,离心率.设是的一个交点. (1)当时,求椭圆的方程. (2)在(1)的条件下,直线过的右焦点,与交于两点,且等于的周长,求的方程. (3)求所有正实数,使得的边长是连续正整数.
设,用表示当时的函数值中整数值的个数. (1)求的表达式. (2)设,求. (3)设,若,求的最小值.
如图,正方体中,已知为棱上的动点. (1)求证:; (2)当为棱的中点时,求直线与平面所成角的正弦值.
已知的定义域为[]. (1)求的最小值. (2)中,,,边的长为函数的最大值,求角大小及的面积.