(本小题满分12分)如图,四棱锥中,为矩形,平面平面.(Ⅰ)求证:(Ⅱ)若,问当为何值时,四棱锥的体积最大?并求其最大体积.
小波以游戏方式决定:是去打球、唱歌还是去下棋.游戏规则为:以O为起点,再从A1,A2,A3,A4,A5,A6(如图)这6个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X,若就去打球;若就去唱歌;若就去下棋. (Ⅰ)分别求小波去下棋的概率和不去唱歌的概率. (Ⅱ)写出数量积X的所有可能取值,并求X分布列与数学期望
如图,在长方体,中,,点在棱AB上移动. (Ⅰ)证明:; (Ⅱ)求点到平面的距离; (Ⅲ)等于何值时,二面角的大小为
已知函数x∈R且, (Ⅰ)求的最小正周期; (Ⅱ)函数f(x)的图象经过怎样的平移才能使所得图象对应的函数成为偶函数?(列举出一种方法即可).
已知圆直线与圆相切,且交椭圆于两点,是椭圆的半焦距,, (Ⅰ)求的值; (Ⅱ)O为坐标原点,若求椭圆的方程; (Ⅲ) 在(Ⅱ)的条件下,设椭圆的左右顶点分别为A,B,动点,直线AS,BS与直线分别交于M,N两点,求线段MN的长度的最小值.
如图是某重点中学学校运动场平面图,运动场总面积15000平方米,运动场是由一个矩形和分别以、为直径的两个半圆组成,塑胶跑道宽8米,已知塑胶跑道每平方米造价为150元,其它部分造价每平方米80元, (Ⅰ)设半圆的半径(米),写出塑胶跑道面积与的函数关系式; (Ⅱ)由于受运动场两侧看台限制,的范围为,问当为何值时,运动场造价最低(第2问取3近似计算).