(本小题满分14分)已知函数,其中常数.(Ⅰ)当时,求函数的极值点;(Ⅱ)证明:对任意恒成立;(Ⅲ)对于函数图象上的不同两点,如果在函数图象上存在点(其中),使得在点M处的切线∥AB,则称直线AB存在“伴侣切线”.特别地,当,又称直线AB存在“中值伴侣切线”.试问:当时,对于函数图象上不同两点A、B,直线AB是否存在“中值伴侣切线”,并证明你的结论.
(本小题满分12分) 已知命题:曲线为双曲线;命题:函数在上是增函数;若命题“或”为真,命题“且”为假,求实数的取值范围.
(本小题满分12分) 在中,角、、的对边分别为、、,且满足. (1)求角的大小; (2)当时,求的面积.
(本小题满分13分)已知椭圆的中心在原点,一个焦点F1(0,-2),且离心率e满足:,e,成等比数列. (1)求椭圆方程; (2)是否存在直线l,使l与椭圆交于不同的两点M、N,且线段MN恰被直线x=- 平分.若存在,求出l的倾斜角的范围;若不存在,请说明理由.
(本小题满分13分)已知函数(). (1)若函数在处的切线与x轴平行,求a的值,并求出函数的极值; (2)已知函数,在(1)的条件下,若恒成立,求b的取值范围.
(本小题满分12分) 设数列为等差数列,且a5=14,a7=20。 (1)求数列的通项公式; (2)若