已知,,且. (1)将表示为的函数,并求的单调增区间;(2)已知分别为的三个内角对应的边长,若,且,,求的面积.
(本题满分12分)已知命题p:方程有两个不相等的实根;q:不等式的解集为R;若p或q为真,p且q为假,求实数m的取值范围.
如图,已知抛物线C1: y=x2, 与圆C2: x2+(y+1)2="1," 过y轴上一点A(0, a)(a>0)作圆C2的切线AD,切点为D(x0, y0).(1)证明:(a+1)(y0+1)=1(2)若切线AD交抛物线C1于E,且E为AD的中点,求点A纵坐标a.
如图,已知四棱锥S—ABCD中,△SAD是边长为a的正三角形,平面SAD⊥平面ABCD,四边形ABCD为菱形,∠DAB=60°,P为AD中点,Q为SB中点,(1)求证:PQ∥平面SCD;(2)求二面角B—PC—Q的正切值的大小。
如图所示,在长方体OABC—O1A1B1C1中,OA=2,AB=3,AA1=2。作OD⊥AC于D,利用空间坐标系求点O1到点D的距离。
长方体的全面积为11,十二条棱长度之和为24,求这个长方体的一条对角线长。