(本小题满分14分) : 已知二次函数在处取得极值,且在点处的切线与直线平行.(1)求的解析式;(2)求函数的单调递增区间与极值.
已知向量.记(I)求的最小正周期及单调增区间;(Ⅱ)在中,角,,的对边分别为若,,,求的面积.
选修4—2:矩阵与变换 二阶矩阵M有特征值,其对应的一个特征向量e=,并且矩阵M对应的变换将点变换成点,求矩阵M.
选修4—1几何证明选讲.如图,在△ABC中,CM是∠ACB的平分线,△AMC的外接圆O交BC于点N. 若AB=2AC,求证:BN=2AM.
已知函数,,且在点处的切线方程为.(1)求的解析式;(2)求函数的单调递增区间;(3)设函数若方程恰四个不同的解,求实数的取值范围.
已知数列的前项和满足:(t为常数,且).(1)求的通项公式;(2)设,试求t的值,使数列为等比数列;(3)在(2)的情形下,设,数列的前项和为,若不等式对任意的恒成立,求实数的取值范围.