已知四棱锥P—ABCD中,平面ABCD,底面ABCD为菱形,,AB=PA=2,E.F分别为B C.PD的中点。(Ⅰ)求证:PB//平面AFC;(Ⅱ)求平面PAE与平面PCD所成锐二面角的余弦值。
设a≥0,在复数集C中,解方程:z+2|z|=a。
已知A(1,1)为椭圆=1内一点,F1为椭圆左焦点,P为椭圆上一动点.则|PF1|+|PA|的最大值为 ,最小值为 。
设|z|=5,|z|=2, |z-|=,求的值。
求函数的值域
已知复数z满足,求z的模的最大值、最小值。