已知命题p:不等式恒成立;命题q:不等式有解,若P是真命题,q是假命题,求a的取值范围。
设定义在区间[x1,x2]上的函数y=f(x)的图象为C,M是C上的任意一点,O为坐标原点,设向量=,,=(x,y),当实数λ满足x="λ" x1+(1-λ) x2时,记向量=λ+(1-λ).定义“函数y=f(x)在区间[x1,x2]上可在标准k下线性近似”是指“k恒成立”,其中k是一个确定的正数.(1)设函数 f(x)=x2在区间[0,1]上可在标准k下线性近似,求k的取值范围;(2)求证:函数在区间上可在标准k=下线性近似.(参考数据:e=2.718,ln(e-1)=0.541)
如图,实线部分的月牙形公园是由圆P上的一段优弧和圆Q上的一段劣弧围成,圆P和圆Q的半径都是2km,点P在圆Q上,现要在公园内建一块顶点都在圆P上的多边形活动场地.(1)如图甲,要建的活动场地为△RST,求场地的最大面积;(2)如图乙,要建的活动场地为等腰梯形ABCD,求场地的最大面积.
在平面直角坐标系中,如图,已知椭圆E:的左、右顶点分别为、,上、下顶点分别为、.设直线的倾斜角的正弦值为,圆与以线段为直径的圆关于直线对称.(1)求椭圆E的离心率;(2)判断直线与圆的位置关系,并说明理由;(3)若圆的面积为,求圆的方程
已知椭圆的上、下顶点分别为是椭圆上两个不同的动点. (I)求直线与交点的轨迹C的方程; (Ⅱ)若过点F(0,2)的动直线z与曲线C交于A、B两点,问在y轴上是否存在定点E,使得?若存在,求出E点的坐标;若不存在,说明理由.
已知函数. (I)若,求函数极值; (II)设F(x)=,若函数F(x)在[0,1]上单调递增,求的取值范围.