在直角梯形A1A2A3D中,A1A2⊥A1D,A1A2⊥A2A3,且B,C分别是边A1A2,A2A3上的一点,沿线段BC,CD,DB分别将△BCA2,△CDA3,△DBA1翻折上去恰好使A1,A2,A3重合于一点A。(Ⅰ)求证:AB⊥CD;(Ⅱ)已知A1D=10,A1A2=8,求二面角A-BC-D的余弦值。
若数列满足,则称数列为“平方递推数列”.已知数列中,,点在函数的图象上,其中为正整数. (1)证明数列是“平方递推数列”,且数列为等比数列; (2)设(1)中“平方递推数列”的前项之积为,即,求数列的通项及关于的表达式; (3)记,求数列的前项和,并求使的的最小值.
某居民小区有两个相互独立的安全防范系统(简称系统)甲和乙,系统甲和系统乙在任意时刻发生故障的概率分别为和,若在任意时刻至多有一个系统发生故障的概率为 (Ⅰ)求的值; (Ⅱ)设系统乙在次相互独立的检测中不发生故障的次数为随机变量,求的数学期望
设函数 (Ⅰ)求函数的最大值及此时的取值集合; (Ⅱ)设为的三个内角,若,,且为锐角,求的值.
(本小题满分10分)选修4—5:不等式选讲 已知函数. (1)当时,解不等式; (2)若存在实数,使得不等式成立,求实数的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程 已知直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程是. (1)写出直线的极坐标方程与曲线的普通方程; (2)若点是曲线上的动点,求到直线距离的最小值,并求出此时点的坐标.