(本小题满分13分)设函数(I)若当时,取得极值,求的值,并讨论的单调性;(II)若存在极值,求的取值范围,并证明所有极值之和大于.
设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为和组成数对(,并构成函数(Ⅰ)写出所有可能的数对(,并计算,且的概率;(Ⅱ)求函数在区间[上是增函数的概率.
如图,在四棱锥中,底面是菱形,,为的中点,为的中点. (Ⅰ)证明:平面平面; (Ⅱ)证明:直线.
已知函数f(x)=(其中A>0,)的图象如图所示。 (Ⅰ)求A,w及j的值; (Ⅱ)若tana=2,求的值。
已知数列的前n项和为,,,等差数列中,且,又、、成等比数列.(Ⅰ)求数列、的通项公式;(Ⅱ)求数列的前n项和.
已知函数. (Ⅰ)当a=0时,求函数f(x)的图像在点A(1,f(1))处的切线方程; (Ⅱ)若f(x)在R上单调,求a的取值范围; (Ⅲ)当时,求函数f(x)的极小值。