注意:请考生在(1)、(2)、(3)三题中任选一题做答,如果多做,则按所做的第一题计分(1)如图,AC为⊙O的直径,弦BD⊥AC于点P,PC=2,PA=8,则的值为 _____.(2)在极坐标系中,圆的圆心的极坐标是 _____.(3)不等式的解集为 _____.
(本小题满分16分)若数列满足①,②存在常数与无关),使.则称数列是“和谐数列”. (1)设为等比数列的前项和,且,求证:数列是“和谐数列”; (2)设是各项为正数,公比为q的等比数列,是的前项和,求证:数列是“和谐数列”的充要条件为.
(本小题满分16分)已知函数,,设. (1)若在处取得极值,且,求函数h(x)的单调区间; (2)若时函数h(x)有两个不同的零点x1,x2. ①求b的取值范围;②求证:.
(本小题满分16分) 已知椭圆过点,离心率为. (1)若是椭圆的上顶点,分别是左右焦点,直线分别交椭圆于,直线交于D,求证; (2)若分别是椭圆的左右顶点,动点满足,且交椭圆于点. 求证:为定值.
(本小题满分14分)2014年8月以“分享青春,共筑未来”为口号的青奥会在江苏南京举行, 为此某商店经销一种青奥会纪念徽章,每枚徽章的成本为30元,并且每卖出一枚徽章需向相关部门上缴元(为常数,),设每枚徽章的售价为元(35).根据市场调查,日销售量与(为自然对数的底数)成反比例.已知当每枚徽章的售价为40元时,日销售量为10枚. (1)求该商店的日利润与每枚徽章的售价的函数关系式; (2)当每枚徽章的售价为多少元时,该商店的日利润最大?并求出的最大值.
(本小题满分14分)在四棱锥中,平面,是边长为4的正三角形,与的交点恰好是中点,又,点在线段上,且. (1)求证:; (2)求证:平面.