已知函数 f ( x ) = a x 4 ln x + b x 4 - c ( x > 0 ) 在 x = 1 处取得极值 - 3 - c ,其中 a , b , c 为常数。 (1)试确定 a , b 的值; (2)讨论函数 f ( x ) 的单调区间; (3)若对任意 x > 0 ,不等式 f ( x ) ≥ - 2 c 2 恒成立,求 c 的取值范围.
如图,在四棱锥A—BCC1B1中,等边三角形ABC所在平面与正方形BCC1B1所在平面互相垂直,D为CC1的中点. (1)求证:BD⊥AB1; (2)求二面角B—AD—B1的余弦值.
已知数列{an}中,a1=2,an=2-(n≥2,n∈N*). (1)设bn=,n∈N*,求证:数列{bn}是等差数列; (2)设cn=(n∈N*),求数列{cn}的前n项和Sn.
假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被关闭,且概率均为,记此时教室里敞开的窗户个数为X. (1)求X的分布及数学期望; (2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时该教室里敞开的窗户个数为Y,求Y的数学期望.
已知函数f(x)=sin 2x-cos2x-,x∈R. (1)求函数f(x)的最小值和最小正周期; (2)设△ABC的内角A、B、C的对边分别为a、b、c,且c=,f(C)=0,若sin B=2sin A,求a,b的值.
如图,椭圆C0:(a>b>0,a,b为常数),动圆C1:x2+y2=t12,b<t1<a.点A1,A2分别为C0的左,右顶点,C1与C0相交于A,B,C,D四点. (1)求直线AA1与直线A2B交点M的轨迹方程; (2)设动圆C2:x2+y2=t22与C0相交于A′,B′,C′,D′四点,其中b<t2<a,t1≠t2.若矩形ABCD与矩形A′B′C′D′的面积相等,证明:t12+t22为定值.