某单位有三辆汽车参加某种事故保险,单位年初向保险公司缴纳每辆900元的保险金.对在一年内发生此种事故的每辆汽车,单位获9000元的赔偿(假设每辆车最多只赔偿一次).设这三辆车在一年内发生此种事故的概率分别为 1 9 , 1 10 , 1 11 ,且各车是否发生事故相互独立,求一年内该单位在此保险中: (1)获赔的概率; (2)获赔金额 ξ 的分布列与期望.
如图所示,在矩形ABCD中,AD=2AB=2,点E是AD的中点,将△DEC沿CE折起到△D′EC的位置,使二面角D′—EC—B是直二面角. (1)证明:BE⊥C D′; (2)求二面角D′—BC—E的正切值.
如图,已知平面,平面,△为等边三角形,,为的中点. (1)求证:平面; (2)求证:平面平面; (3)求直线和平面所成角的正弦值.
如图,设正三棱锥的侧棱长为,,,分别是,上的点,求周长的最小值.
画出右图的三视图
画出图中个图形的指定三视图(之一).