已知各项全不为零的数列 { a k } 的前k项和为 S k ,且 S k = 1 2 a k a k + 1 ( k ∈ N * ) ,其中 a 1 = 1 . (Ⅰ)求数列 { a k } 的通项公式; (Ⅱ)对任意给定的正整数 n ( n ≥ 2 ) ,数列 { b k } 满足 b k + 1 b k = k - n a k + 1 ( k = 1 , 2 , . . . , n - 1 ) , b 1 = 1 .求 b 1 + b 2 + . . . + b n .
求圆心在直线3x+y-5=0上,并且经过原点和点(4,0)的圆的方程
已知正项数列在抛物线上;数列中,点在过点(0,1),以为斜率的直线上。 (1)求数列的通项公式; (2)若成立,若存在,求出k值;若不存在,请说明理由; (3)对任意正整数,不等式恒成立,求正数的取值范围。
作为绍兴市2013年5.1劳动节系列活动之一的花卉展在镜湖湿地公园举行.现有一占地1800平方米的矩形地块,中间三个矩形设计为花圃(如图),种植有不同品种的观赏花卉,周围则均是宽为1米的赏花小径,设花圃占地面积为平方米,矩形一边的长为米(如图所示) (1)试将表示为的函数; (2)问应该如何设计矩形地块的边长,使花圃占地面积取得最大值.
在等比数列中,已知,公比,等差数列满足. (Ⅰ)求数列与的通项公式; (Ⅱ)记,求数列的前n项和.
在中,内角的对边分别为.已知. (Ⅰ)求的值; (Ⅱ)若为钝角,,求的取值范围.