已知各项全不为零的数列 { a k } 的前k项和为 S k ,且 S k = 1 2 a k a k + 1 ( k ∈ N * ) ,其中 a 1 = 1 . (Ⅰ)求数列 { a k } 的通项公式; (Ⅱ)对任意给定的正整数 n ( n ≥ 2 ) ,数列 { b k } 满足 b k + 1 b k = k - n a k + 1 ( k = 1 , 2 , . . . , n - 1 ) , b 1 = 1 .求 b 1 + b 2 + . . . + b n .
如图所示,已知圆为圆上一动点,点在上,点在上,且满足的轨迹为曲线. (1)求曲线的方程; (2)若直线与(1)中所求点的轨迹交于不同两点是坐标原点,且,求△的面积的取值范围.
如图,在直三棱柱 点D在 (1)证明:无论为任何正数,均有; (2)当为何值时,二面角.
如图,三条直线、、两两平行,直线、间的距离为,直线、间的距离为,、为直线上的两个定点,且,是在直线上滑动的长度为的线段. (1)建立适当的平面直角坐标系,求△的外心的轨迹; (2)当△的外心在上什么位置时,使最小?最小值是多少?(其中,为外心到直线的距离)
(12分)已知两点满足条件的动点P的轨迹是曲线,与曲线交于、两点. (1)求k的取值范围; (2)如果求直线l的方程.
.如图,在三棱锥中,平面,,、、分别为棱、、的中点,, (1)求证:; (2)求直线与平面所成角正弦值.