某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交 a 元( 3 ≤ a ≤ 5 )的管理费,预计当每件产品的售价为 x 元( 9 ≤ x ≤ 11 )时,一年的销售量为 ( 12 - x ) 2 万件. (Ⅰ)求分公司一年的利润 L (万元)与每件产品的售价 x 的函数关系式; (Ⅱ)当每件产品的售价为多少元时,分公司一年的利润 L 最大,并求出 L 的最大值 Q ( a ) .
(本小题满分12分)已知为复数,和均为实数,其中是虚数单位. (Ⅰ)求复数和; (Ⅱ)若在第四象限,求的范围.
(本小题满分14分)已知椭圆上的点到左右两焦点的距离之和为,离心率为. (Ⅰ)求椭圆的方程; (Ⅱ)过右焦点的直线交椭圆于两点. (1)若轴上一点满足,求直线斜率的值; (2)是否存在这样的直线,使的最大值为(其中为坐标原点)?若存在,求直线方程;若不存在,说明理由.
(本小题满分13分)已知数列的前项和,满足为常数,且,且是与的等差中项. (Ⅰ)求的通项公式; (Ⅱ)设,求数列的前项和.
(本小题满分12分)如图,已知平面是正三角形,. (Ⅰ)在线段上是否存在一点,使平面? (Ⅱ)求证:平面平面; (Ⅲ)求二面角的余弦值.
(本小题满分12分)已知抛物线的顶点在坐标原点,对称轴为轴,焦点为,抛物线上一点的横坐标为,且. (Ⅰ)求此抛物线的方程; (Ⅱ)过点做直线交抛物线于两点,求证:.