已知集合 A = a 1 , a 2 , … , a k k ≥ 2 ,其中 a i ∈ Z i = 1 , 2 , … , k ,由 A 中的元素构成两个相应的集合: S = a , b a ∈ A , b ∈ A , a + b ∈ A , T = a , b a ∈ A , b ∈ A , a - b ∈ A .其中是有序数对,集合 S 和 T 中的元素个数分别为 m 和 n .若对于任意的 a ∈ A ,总有 - a ∉ A ,则称集合 A 具有性质 P . (I)检验集合 0 , 1 , 2 , 3 与 - 1 , 2 , 3 是否具有性质 P 并对其中具有性质 P 的集合,写出相应的集合 S 和 T ; (II)对任何具有性质 P 的集合 A ,证明: n ≤ k k - 1 2 ; (III)判断 m 和 n 的大小关系,并证明你的结论.
(本小题满分12分)在△ABC中,角A,B,C的对边分别是a,b,c,若asinA=(a-b)sinB+csinC(1)求角C的值;(2)若c=2,且sinC+sin(B-A)=3sin2A,求△ABC的面积.
(本小题满分12分)已知等差数列{an}的前n项和为Sn,且a2=-5,S5=-20.(1)求数列{an}的通项公式;(2)求使得不等式Sn>an成立的n的最小值.
已知函数(1)若函数在内没有极值点,求实数a的取值范围;(2)若a=1时函数有三个互不相同的零点,求实数m的取值范围;(3)若对任意的,不等式在上恒成立,求实数m的取值范围.
已知圆的方程为, 椭圆的方程为(a>b>0),其离心率为,如果与相交于A,B两点,且线段AB恰为圆的直径.(1)求直线AB的方程和椭圆的方程;(2)如果椭圆的左,右焦点分别是,椭圆上是否存在点P,使得,如果存在,请求点P的坐标,如果不存在,请说明理由.
如图,在正三棱柱中, 点D为棱AB的中点,BC=1,.(1)求证:∥平面;(2)求三棱锥 的体积.