已知集合 A = a 1 , a 2 , … , a k k ≥ 2 ,其中 a i ∈ Z i = 1 , 2 , … , k ,由 A 中的元素构成两个相应的集合: S = a , b a ∈ A , b ∈ A , a + b ∈ A , T = a , b a ∈ A , b ∈ A , a - b ∈ A .其中是有序数对,集合 S 和 T 中的元素个数分别为 m 和 n .若对于任意的 a ∈ A ,总有 - a ∉ A ,则称集合 A 具有性质 P . (I)检验集合 0 , 1 , 2 , 3 与 - 1 , 2 , 3 是否具有性质 P 并对其中具有性质 P 的集合,写出相应的集合 S 和 T ; (II)对任何具有性质 P 的集合 A ,证明: n ≤ k k - 1 2 ; (III)判断 m 和 n 的大小关系,并证明你的结论.
盒子中装有四张大小形状均相同的卡片,卡片上分别标有数字-1,0,1,2.称“从盒中随机抽取一张,记下卡片上的数字后并放回”为一次试验(设每次试验的结果互不影响). (1)在一次试验中,求卡片上的数字为正数的概率; (2)在四次试验中,求至少有两次卡片上的数字都为正数的概率; (3)在两次试验中,记卡片上的数字分别为X,η,试求随机变量X=X·η的分布列与数学期望E(X).
某次考试中,从甲,乙两个班各抽取10名学生的成绩进行统计分析,两班10名学生成绩的茎叶图如图所示,成绩不小于90分为及格. (1)从每班抽取的学生中各抽取一人,求至少有一个及格的概率; (2)从甲班10人中取两人,乙班10人中取一人,三人中及格人数记为X,求X的分布列和数学期望.
某学生参加某高校的自主招生考试,须依次参加A,B,C,D,E五项考试,如果前四项中有两项不合格或第五项不合格,则该考生就被淘汰,考试即结束;考生未被淘汰时,一定继续参加后面的考试.已知每一项测试都是相互独立的,该生参加A,B,C,D四项考试不合格的概率均为,参加第五项不合格的概率为. (1)求该生被录取的概率; (2)记该生参加考试的项数为X,求X的分布列和期望.
甲、乙两人玩猜数字游戏,规则如下: ①连续竞猜3次,每次相互独立; ②每次竞猜时,先由甲写出一个数字,记为a,再由乙猜甲写的数字,记为b,已知a,b∈{0,1,2,3,4,5},若|a-b|≤1,则本次竞猜成功; ③在3次竞猜中,至少有2次竞猜成功,则两人获奖. 求甲乙两人玩此游戏获奖的概率.
已知函数f(x)=sincos+sin2(其中ω>0,0<φ<).其图象的两个相邻对称中心的距离为,且过点. (1)函数f(x)的解析式; (2)在△ABC中,a,b,c分别是角A,B,C的对边,a=,S△ABC=2,角C为锐角.且满足f=,求c的值.