已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球. (Ⅰ)求取出的4个球均为黑球的概率; (Ⅱ)求取出的4个球中恰有1个红球的概率; (Ⅲ)设 ξ 为取出的4个球中红球的个数,求 ξ 的分布列和数学期望.
已知函数有最小值. (Ⅰ)求实数的取值范围; (Ⅱ)设为定义在上的奇函数,且时,,求的解析式.
在四棱锥中,底面是边长为的菱形,,面,,,分别为,的中点. (Ⅰ)求证:面; (Ⅱ)求点到面的距离.
若函数,的定义域都是集合,函数和的值域分别为和. (Ⅰ)若,求; (Ⅱ)若,且,求实数m的值.
已知椭圆,椭圆的右焦点为F. (1)求过点F且斜率为1的直线被椭圆截得的弦长. (2)求以M(1,1)为中点的椭圆的弦所在的直线方程. (3)过椭圆的右焦点F的直线l交椭圆于A,B,求弦 AB的中点P的轨迹方程.
已知正四棱柱中,. (Ⅰ)求证:; (Ⅱ)求钝二面角的余弦值; (Ⅲ)在线段上是否存在点,使得平面平面,若存在,求出的值;若不存在, 请说明理由.