已知函数 f ( x ) = 1 3 x 3 + 1 2 a x 2 + b x 在区间 [ - 1 , 1 ) , ( 1 , 3 ] 内各有一个极值点. (I)求 a 2 - 4 b 的最大值; (II)当 a 2 - 4 b = 8 时,设函数 y = f ( x ) 在点 A ( 1 , f ( 1 ) ) 处的切线为 l ,若 l 在点 A 处穿过函数 y = f ( x ) 的图象(即动点在点 A 附近沿曲线 y = f ( x ) 运动,经过点 A 时,从 l 的一侧进入另一侧),求函数 y = f ( x ) 的表达式.
如图,已知椭圆C的方程为+y2=1,A、B是四条直线x=±2,y=±1所围成的矩形的两个顶点. (1)设P是椭圆C上任意一点,若=m+n,求证:动点Q(m,n)在定圆上运动,并求出定圆的方程; (2)若M、N是椭圆C上两个动点,且直线OM、ON的斜率之积等于直线OA、OB的斜率之积,试探求△OMN的面积是否为定值,并说明理由.
给定椭圆C:=1(a>b>0),称圆心在原点O、半径是的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(,0),其短轴的一个端点到点F的距离为. (1)求椭圆C和其“准圆”的方程; (2)若点A是椭圆C的“准圆”与x轴正半轴的交点,B、D是椭圆C上的两相异点,且BD⊥x轴,求·的取值范围; (3)在椭圆C的“准圆”上任取一点P,过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,试判断l1,l2是否垂直?并说明理由.
如图,在平面直角坐标系xOy中,圆C:(x+1)2+y2=16,点F(1,0),E是圆C上的一个动点,EF的垂直平分线PQ与CE交于点B,与EF交于点D. (1)求点B的轨迹方程; (2)当点D位于y轴的正半轴上时,求直线PQ的方程; (3)若G是圆C上的另一个动点,且满足FG⊥FE,记线段EG的中点为M,试判断线段OM的长度是否为定值?若是,求出该定值;若不是,说明理由.
如图,过抛物线C:y2=4x上一点P(1,-2)作倾斜角互补的两条直线,分别与抛物线交于点A(x,y1),B(x2,y2). (1)求y1+y2的值; (2)若y1≥0,y2≥0,求△PAB面积的最大值.
已知双曲线=1的离心率为2,焦点到渐近线的距离等于,过右焦点F2的直线l交双曲线于A、B两点,F1为左焦点. (1)求双曲线的方程; (2)若△F1AB的面积等于6,求直线l的方程.