已知函数 f ( x ) = 1 3 x 3 + 1 2 a x 2 + b x 在区间 [ - 1 , 1 ) , ( 1 , 3 ] 内各有一个极值点. (I)求 a 2 - 4 b 的最大值; (II)当 a 2 - 4 b = 8 时,设函数 y = f ( x ) 在点 A ( 1 , f ( 1 ) ) 处的切线为 l ,若 l 在点 A 处穿过函数 y = f ( x ) 的图象(即动点在点 A 附近沿曲线 y = f ( x ) 运动,经过点 A 时,从 l 的一侧进入另一侧),求函数 y = f ( x ) 的表达式.
已知椭圆:与双曲线有相同的焦点,且椭圆的离心率,又为椭圆的左右顶点,为椭圆上任一点(异于).(1)求椭圆的方程;(2)若直线交直线于点,过作直线的垂线交轴于点,求的坐标;(3)求点在直线上射影的轨迹方程.
定义在上的函数同时满足以下条件:①在上是减函数,在上是增函数;②是偶函数;③在处的切线与直线垂直. (1)求函数的解析式;(2)设,若存在,使,求实数的取值范围.
如图,在四棱锥中,四边形为平行四边形,为上一点,且.(1)求证:;(2)若点为线段的中点,求证:;(3) 若 ,且二面角的大小为,求三棱锥的体积.
在中分别为角所对的边的边长,(1)试叙述正弦或余弦定理并证明之;(2)设,求证:.
一笼子中装有2只白猫,3只黑猫,笼门打开每次出来一只猫,每次每只猫都有可能出来.(1)第三次出来的是只白猫的概率;(2)记白猫出来完时笼中所剩黑猫数为,试求的概率分布列及期望.