(本题12分)已知函数,.(1)试判断函数的单调性,并用定义加以证明;(2)求函数的最大值和最小值.
如图是总体的一个样本频率分布直方图,且在区间[15,18)内的频数为8. (1)求样本容量; (2)若在[12,15)内的小矩形的面积为0.06, ①求样本在[12,15)内的频数; ②求样本在[18,33)内的频率。
集合A=(―∞,―2]∪[3,+∞),关于x的不等式(x-2a)·(x+a)>0的解集为B(其中a<0). (1)求集合B; (2)设p:x∈A,q:x∈B,且Øp是Øq的充分不必要条件,求a的取值范围。
已知定点A(-2,0)和B(2,0),曲线E上任一点P满足|PA|-|PB|=2. (1)求曲线E的方程; (2)延长PB与曲线E交于另一点Q,求|PQ|的最小值; (3)若直线l的方程为x=a(a≤),延长PB与曲线E交于另一点Q,如果存在某一位置,使得从PQ的中点R向l作垂线,垂足为C,满足PC⊥QC,求a的取值范围。
如图,椭圆过点P(1, ),其左、右焦点分别为F1,F2,离心率e=,M,N是直线x=4上的两个动点,且·=0. (1)求椭圆的方程; (2)求|MN|的最小值; (3)以MN为直径的圆C是否过定点?请证明你的结论。
如图,在四棱锥O—ABCD中,底面ABCD是边长为1的正方形,OA⊥底面ABCD,OA=2,M为OA中点。 (1)求证:直线BD⊥平面OAC; (2)求直线MD与平面OAC所成角的大小; (3)求点A到平面OBD的距离。