已知定点A(-2,0)和B(2,0),曲线E上任一点P满足|PA|-|PB|=2.(1)求曲线E的方程;(2)延长PB与曲线E交于另一点Q,求|PQ|的最小值;(3)若直线l的方程为x=a(a≤),延长PB与曲线E交于另一点Q,如果存在某一位置,使得从PQ的中点R向l作垂线,垂足为C,满足PC⊥QC,求a的取值范围。
设椭圆C: 过点(0,4),离心率为.(1)求椭圆C的方程;(2)求过点(3,0)且斜率为的直线被C所截得线段的中点坐标.
已知等差数列前项和为,且(Ⅰ)求数列的通项公式;(Ⅱ)令()求数列前项和为
如图,测量河对岸的塔高时,可以选与塔底同一水平面内的两个测点.现测得,,并在点测得塔顶的仰角为, 求塔高(精确到,)
已知函数在时取得最大值4. (1) 求的最小正周期;(2) 求的解析式;(3) 若(α +)=,求sinα.
已知函数,①求函数的单调区间。②若函数的图象在点(2,)处的切线的倾斜角为,对任意的,函数在区间上总不是单调函数,求m取值范围③求证: