有n2(n≥4)个正数,排成n×n矩阵(n行n列的数表),其中每一行的数成等差数列,每一列的数成等比数列,并且所有公比都相等,且满足a24=1,a42=,a43=,求:(1)公比q;(2)用k表示a4k;(3)求a11+a22+a33+…+ann的值。
已知直线与圆相交于不同两点,.(Ⅰ)求实数的取值范围(Ⅱ)是否存在实数,使得过点的直线垂直平分弦?若存在,求出的值;若不存在,请说明理由.
在中,角、、对的边分别为、、,且(Ⅰ)求的值;(Ⅱ)若,求的面积.
已知点和点.(Ⅰ)求过点且与直线垂直的直线的一般式方程;(Ⅱ)求以线段为直径的圆的标准方程.
已知几何体的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.(Ⅰ)求此几何体的体积的大小;(Ⅱ)求异面直线DE与AB所成角的余弦值;(Ⅲ)求二面角A-ED-B的正弦值.
两仓库分别有编织袋50万个和30万个,由于抗洪抢险的需要,现需调运40万个到甲地,20万个到乙地.已知从仓库调运到甲、乙两地的运费分别为120元/万个、180元/万个;从仓库调运到甲、乙两地的运费分别为100元/万个、150元/万个.问如何调运,能使总运费最小?总运费的最小值是多少?