(本小题满分10分)已知数列的通项公式为,为其前项的和.计算,,的值,根据计算结果,推测出计算的公式,并用数学归纳法加以证明.
设函数. ⑴求函数的单调区间; ⑵求函数的值域; ⑶已知对恒成立,求实数的取值范围.
已知数列的各项均为正数,其前项和为,且. ⑴求证:数列是等差数列; ⑵设,求证:; ⑶设,,求.
已知如图,平行四边形中,,,,正方形所在平面与平面垂直,分别是的中点。 ⑴求证:平面; ⑵求平面与平面所成的二面角的正弦值。
在中,分别为角所对的边,且,,,求角的正弦值.
已知函数(是常数)在处的切线方程为,且. (Ⅰ)求常数的值; (Ⅱ)若函数()在区间内不是单调函数,求实数的取值范围; (Ⅲ)证明:.