(本小题满分12分)甲乙两奥运会主办城市之间有7条网线并联,这7条网线能通过的信息量分别为1,1,2,2,2,3,3,现从中任选三条网线,设可通过的信息量为X,当可通过的信息最,则可保证信息通畅。(I)求线路信息通畅的概率;(II)求线路可通过的信息量X的分布列及数学期望。
(本小题满分14分)现有甲,乙,丙,丁四名篮球运动员进行传球训练,由甲开始传球(即第一次传球是由甲传向乙或丙或丁),记第次传球球传回到甲的不同传球方式种数为.(1)试写出,并找出与()的关系式;(2)求数列的通项公式;(3)证明:当时, .
(本小题满分13分)(1)若(),试求实数的范围;(2)设实数,函数,试求函数的值域。
(本小题满分12分)已知不等式组所表示的平面区域为D,记D内的整点个数为(整点即横坐标和纵坐标均为整数的点).(1)数列的通项公式;(2)若,记,求证:.
(本小题满分12分)如左图示,在四棱锥A-BHCD中,AH⊥面BHCD,此棱锥的三视图如下:(1)求二面角B-AC-D的大小;(2)在线段AC上是否存在一点E,使ED与面BCD成45°角?若存在,确定E的位置;若不存在,说明理由。
(本小题满分12分)已知:,,函数.(1)化简的解析式,并求函数的单调递减区间;(2)在△ABC中,分别是角A,B,C的对边,已知,△ABC的面积为,求的值.