(本小题共13分) 在平面直角坐标系中,平面区域中的点的坐标满足,从区域中随机取点. (Ⅰ)若,,求点位于第四象限的概率; (Ⅱ)已知直线与圆相交所截得的弦长为, 求的概率.
已知集合M={x|x(x-a-1)<0,x∈R},N={x|x2-2x-3≤0},若M∪N=N,求实数a的取值范围.
如图,,为圆柱的母线,是底面圆的直径,,分别是,的中点,. (1)证明:; (2)证明:; (3)假设这是个大容器,有条体积可以忽略不计的小鱼能在容器的任意地方游弋,如果鱼游到四棱锥内会有被捕的危险,求鱼被捕的概率.
已知椭圆的左右顶点分别为,离心率. (1)求椭圆的方程; (2)若点为曲线:上任一点(点不同于),直线与直线交于点,为线段的中点,试判断直线与曲线的位置关系,并证明你的结论.
已知实数,且按某种顺序排列成等差数列. (1)求实数的值; (2)若等差数列的首项和公差都为,等比数列的首项和公比都为,数列和的前项和分别为,且,求满足条件的自然数的最大值.
某校高一某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,其可见部分如下,据此解答如下问题: (1)计算频率分布直方图中[80,90)间的矩形的高; (2)若要从分数在之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份试卷的分数在之间的概率; (3)根据频率分布直方图估计这次测试的平均成绩.