(本小题满分12分)一袋中装有分别标记着1,2,3,4,5数字的5个球,(1)从袋中一次取出2个球,试求2个球中最大数字为4的概率;(2)从袋中每次取出一个球,取出后放回,连续取2次,试求取出的2个球中最大数字为5的概率。
设的内角所对边的长分别是,且,的面积为,求与的值.
已知.(1)化简;(2)若是第三象限角,且,求的值.
设椭圆C: (a>b>0)的离心率为,过原点O斜率为1的直线与椭圆C相交于M,N两点,椭圆右焦点F到直线l的距离为.(1)求椭圆C的方程;(2)设P是椭圆上异于M,N外的一点,当直线PM,PN的斜率存在且不为零时,记直线PM的斜率为k1,直线PN的斜率为k2,试探究k1·k2是否为定值?若是,求出定值;若不是,说明理由.
(1)m为何值时,f(x)=x2+2mx+3m+4.①有且仅有一个零点;②有两个零点且均比-1大;(2)若函数f(x)=|4x-x2|+a有4个零点,求实数a的取值范围.
己知等比数列所有项均为正数,首,且成等差数列.(I)求数列的通项公式;(II)数列的前n项和为,若,求实数的值.