(本小题共12分)某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min.(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;(Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间的分布列及期望.
等差数列的前项和记为.已知,(1)求通项;(2)若,求;
比较下列两组数的大小,并说明理由.(1)(2)当时,与
给定数列.对,该数列前项的最大值记为,后项的最小值记为,.(1)设数列为3,4,7,1,写出,,的值;(2)设()是公比大于1的等比数列,且.证明:,,…,是等比数列.
一农民有基本农田2亩,根据往年经验,若种水稻,则每季亩产量为400公斤;若种花生,则每季亩产量为100公斤.但水稻成本较高,每季每亩240元,而花生只需80元;且花生每公斤卖5元,稻米每公斤卖3元.现该农民手头有400元,两种作物各种多少,才能获得最大收益?
已知函数f(x)=x2+ax+1,f(x)在x∈[-3,1上恒有f(x)-3成立,求实数a 的取值范围.