(本小题8分)每次抛掷一枚骰子(六个面上分别标以数字1,2,3,4,5,6)(Ⅰ)连续抛掷2次,求向上的数不同的概率(Ⅱ)连续抛掷2次,求向上的数之和为6的概率
在 ∆ A B C 中, sin C - A = 1 , sin B = 1 3 .
(1)求 sin A 的值;
(2)设 A C = 6 ,求 ∆ A B C 的面积.
已知函数与(为常数)的图象关于直线对称,且是的一个极值点. (I)求出函数的表达式和单调区间; (II)若已知当时,不等式恒成立,求的取值范围.
设函数是在上每一点处可导的函数,若在上恒成立.回答下列问题: (I)求证:函数在上单调递增; (II)当时,证明:; (III)已知不等式在且时恒成立,求证:.
(本题12分)设函数的定义域为A,集合,(1)求;(2)若,求的取值范围。
(本题12分)已知函数,当时,;当时,.(1)为何值时的解集为;(2)求在内的值域.