已知抛物线C:y2=2px(p>0),曲线M:x2+2x+y2=0(y>0).过点P(-3,0)与曲线M相切于点A的直线l,与抛物线C有且只有一个公共点B. (Ⅰ)求抛物线C的方程及点A,B的坐标;(Ⅱ)过点B作倾斜角互补的两条直线分别交抛物线C于S,T两点(不同于坐标原点),求证:直线ST∥直线AO.
设函数,其中. (1)当时,求曲线在点处的切线的斜率; (2)求函数的单调区间与极值; (3)已知函数由三个互不相同的零点,且,若对任意的,恒成立,求实数的取值范围.
已知递增的等比数列的前n项和满足:,且是和的等差中项 (1)求数列的通项公式; (2)若,求使成立的正整数n的值.
已知向量,且,若相邻两对称轴的距离不小于. (1)求正实数的取值范围; (2)在中,分别是的对边,,当最大时,,试求的面积.
已知函数的定义域为不等式的解集,且在定义域内单调递减,求实数的取值范围.
数列的前n项和为. (1)求数列的通项公式; (2)等差数列的各项为正,其前项和记为,且,又成等比数列求.