2010年上海世博会某国要建一座八边形的展馆区,它的主体造型的平面图是由两个相同的矩形和构成的面积为200的十字型地域,计划在正方形上建一座“观景花坛”,造价为4200元,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为210元,再在四个空角(如等)上铺草坪,造价为80元.设长为,长为.(1)试找出与满足的等量关系式;(2)设总造价为元,试建立与的函数关系;(3)若总造价不超过138000元,求长的取值范围.
如图是正方体的平面展开图,那么在这个正方体中,异面直线与所成的角的大小是.
已知椭圆过点,且离心率. (1)求椭圆的标准方程; (2)若直线与椭圆相交于,两点(不是左右顶点),椭圆的右顶点为,且满足,试判断直线是否过定点,若过定点,求出该定点的坐标;若不过定点,请说明理由.
已知函数在与时都取得极值. (1)求的值及的极大值与极小值; (2)若方程有三个互异的实根,求的取值范围; (3)若对,不等式恒成立,求的取值范围.
某商品每件成本5元,售价14元,每星期卖出75件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,)的平方成正比,已知商品单价降低1元时,一星期多卖出5件. (1)将一星期的商品销售利润表示成的函数; (2)如何定价才能使一个星期的商品销售利润最大?
已知圆的圆心与点关于直线对称,直线与圆相交于两点,且,求圆的方程.