(本小题满分12分)如图所示,在海拔为500m的海岛A处,测得海面上两船C、D的俯角分别为45°和30°,又测得°,求C、D两船间的距离。
如图,线段AB的两个端点A、B分别在x轴,y轴上滑动,,点M是线段AB上一点,且点M随线段AB的滑动而运动。(I)求动点M的轨迹E的方程(II)过定点N的直线交曲线E于C、D两点,交y轴于点P,若的值
如图,在多面体ABCD中,DB⊥平面ABC,AE∥BD,且AB=BC=CA=BD=2AE=2(I)求证:平面ECD⊥平面BCD(II)求二面角D-EC-B的正切值(III)求三棱锥A-ECD的体积
已知函数,数列满足(I)求证:数列是等差数列;(II)令,若对一切成立,求最小正整数.
在中,分别是角A,B,C对边,且.(I)若求的值(II)若,求面积的最大值
(本小题满分10分)设圆满足:(Ⅰ)截y轴所得弦长为2;(Ⅱ)被x轴分成两段圆弧,其弧长的比为3∶1.在满足条件(Ⅰ)、(Ⅱ)的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.