某校高一某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,其可见部分如下,据此解答如下问题: (1)计算频率分布直方图中[80,90)间的矩形的高;(2)若要从分数在之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份试卷的分数在之间的概率;(3)根据频率分布直方图估计这次测试的平均成绩.
(1)已知是正常数,,,求证:,指出等号成立的条件; (2)利用(1)的结论求函数()的最小值,指出取最小值时的值.
已知椭圆的中心在原点,焦点在轴的非负半轴上,点到短 轴端点的距离是4,椭圆上的点到焦点距离的最大值是6. (1)求椭圆的标准方程和离心率; (2)若为焦点关于直线的对称点,动点满足,问是否存在一个定点,使到点的距离为定值?若存在,求出点的坐标及此定值;若不存在,请说明理由.
已知. (1)当时,解不等式; (2)当时,恒成立,求实数的取值范围.
已知ΔABC的三边方程是AB:,BC: CA:, (1)求∠A的大小. (2)求BC边上的高所在的直线的方程.
已知椭圆方程为,它的一个顶点为,离心率. (1)求椭圆的方程; (2)设直线l与椭圆交于A,B两点,坐标原点O到直线l的距离为,求△AOB面 积的最大值.