某突发事件,在不采取任何预防措施的情况下发生的概率为,一旦发生,将造成某公司300万元的损失.现有甲、乙两种相互独立的预防措施可供选择,单独采用甲、乙预防措施所需的费用分别为40万元和20万元,采用相应预防措施后此突发事件不发生的概率分别为和.若预防方案允许甲、乙两种预防措施单独采用、同时采用或都不采用,请分别计算这几种预防方案的总费用,并指出哪一种预防方案总费用最少.(注:总费用 = 采取预防措施的费用+发生突发事件损失的期望值)
【选修4-4:坐标系与参数方程选讲】 已知曲线C1的参数方程是,以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程是. 求曲线C1与C2交点的极坐标; A、B两点分别在曲线C1与C2上,当|AB|最大时,求的面积(O为坐标原点)
【选修4-1:几何证明选讲】 如图,P为圆外一点,PD为圆的切线,切点为D,AB为圆的一条直径,过点P作AB的垂线交圆于C、E两点(C、D两点在AB的同侧),垂足为F,连接AD交PE于点G. (1)证明:PG=PD; (2)若AC=BD,求证:线段AB与DE互相平分.
设函数. (1)讨论的导函数的零点的个数; (2)证明:当
已知椭圆C:的离心率与双曲线的离心率互为倒数,且以抛物线的焦点F为右焦点. (1)求椭圆C的标准方程; (2)过右焦点F作斜率为的直线l交曲线C于M、N两点,且,又点H关于原点O的对称点为点G,试问M、G、N、H四点是否共圆?若共圆,求出圆心坐标和半径;若不共圆,请说明理由.
某花店每天以每枝5元的价格从农场购进若干枝郁金香,然后以每枝10元的价格出售.如果当天卖不完,剩下的郁金香做垃圾处理. (1)若花店一天购进17枝郁金香,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式. (2)花店记录了100天郁金香的日需求量(单位:枝),整理得下表: (i)假设花店在这100天内每天购进17枝郁金香,求这100天的日利润(单位:元)的平均数; (ii)若花店一天购进17枝郁金香,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.