本题满分12分)在一个盒子中装有6支圆珠笔,其中3支一等品,2支二等品和1支三等品,从中任取3支﹒求(Ⅰ)恰有1支一等品的概率;(Ⅱ)没有三等品的概率﹒
(本小题满分14分)右图为一简单组合体,其底面为正方形,平面,, 且 (1)求证:平面 (2)求与平面所成角的大小。
已知等差数列满足前2项的和为5,前6项的和为3. (1)求数列的通项公式; (2)设,求数列的前项和
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足 (I)求角B的大小; (II)若b是a和c的等比中项,求△ABC的面积。
已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆. (1)求实数m的取值范围; (2)求该圆半径r的取值范围; (3)求圆心的轨迹方程。
设函数处取得极值 (1)求常数a的值; (2)求在R上的单调区间; (3)求在。