(本小题满分12分)某车间甲组有10名工人,其中有4名女工人;乙组有10名工人,其中有6名女工人。现采用分层抽样(层内采用不放回简单随机抽样)从甲、乙两组中共抽取4名工人进行技术考核。(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)求抽取的4名工人中恰有2名男工人的概率。
命题存在实数,;命题对任意恒成立.若或为真,且为假,试求的取值范围.
已知函数在区间[2,3]上有最大值4和最小值1,设=. (1)求a、b的值; (2)若不等式,在上有解,求实数k的取值范围.
某蔬菜基地种植西红柿,由历年市场行情得出,从2 月1日起的300天内,西红柿市场售价P与上市时间t的关系可用图4的一条折线表示;西红柿的种植成本Q与上市时间t的关系可用图5的抛物线段表示. (1)写出图4表示的市场售价P与时间t的函数关系式,写出图5表示的种植成本Q与时间t的函数关系式. (2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?
已知函数是上的奇函数,当时, (1)当时,求函数的解析式; (2)证明函数在区间上是单调增函数.
求下列各式的值. (1);(2)设,求的值; (3).